Navigating the future of diabetes: innovative nomogram models for predicting all-cause mortality risk in diabetic nephropathy

Author:

Wu Sensen,Wang Hui,Pan Dikang,Guo Julong,Zhang Fan,Ning Yachan,Gu Yongquan,Guo Lianrui

Abstract

Abstract Objective This study aims to establish and validate a nomogram model for the all-cause mortality rate in patients with diabetic nephropathy (DN). Methods We analyzed data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2016. A random split of 7:3 was performed between the training and validation sets. Utilizing follow-up data until December 31, 2019, we examined the all-cause mortality rate. Cox regression models and Least Absolute Shrinkage and Selection Operator (LASSO) regression models were employed in the training cohort to develop a nomogram for predicting all-cause mortality in the studied population. Finally, various validation methods were employed to assess the predictive performance of the nomogram, and Decision Curve Analysis (DCA) was conducted to evaluate the clinical utility of the nomogram. Results After the results of LASSO regression models and Cox multivariate analyses, a total of 8 variables were selected, gender, age, poverty income ratio, heart failure, body mass index, albumin, blood urea nitrogen and serum uric acid. A nomogram model was built based on these predictors. The C-index values in training cohort of 3-year, 5-year, 10-year mortality rates were 0.820, 0.807, and 0.798. In the validation cohort, the C-index values of 3-year, 5-year, 10-year mortality rates were 0.773, 0.788, and 0.817, respectively. The calibration curve demonstrates satisfactory consistency between the two cohorts. Conclusion The newly developed nomogram proves to be effective in predicting the all-cause mortality risk in patients with diabetic nephropathy, and it has undergone robust internal validation.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3