Automatic rigid image Fusion of preoperative MR and intraoperative US acquired after craniotomy

Author:

Mazzucchi EdoardoORCID,Hiepe Patrick,Langhof Max,La Rocca Giuseppe,Pignotti Fabrizio,Rinaldi Pierluigi,Sabatino Giovanni

Abstract

AbstractBackgroundNeuronavigation of preoperative MRI is limited by several errors. Intraoperative ultrasound (iUS) with navigated probes that provide automatic superposition of pre-operative MRI and iUS and three-dimensional iUS reconstruction may overcome some of these limitations. Aim of the present study isto verify the accuracy of an automatic MRI – iUS fusion algorithm to improve MR-based neuronavigation accuracy.MethodsAn algorithm using Linear Correlation of Linear Combination (LC2)-based similarity metric has been retrospectively evaluated for twelve datasets acquired in patients with brain tumor. A series of landmarks were defined both in MRI and iUS scans. The Target Registration Error (TRE) was determined for each pair of landmarks before and after the automatic Rigid Image Fusion (RIF). The algorithm has been tested on two conditions of the initial image alignment: registration-based fusion (RBF), as given by the navigated ultrasound probe, and different simulated course alignments during convergence test.ResultsExcept for one case RIF was successfully applied in all patients considering the RBF as initial alignment. Here, mean TRE after RBF was significantly reduced from 4.03 (± 1.40) mm to (2.08 ± 0.96 mm) (p = 0.002), after RIF. For convergence test, the mean TRE value after initial perturbations was 8.82 (± 0.23) mm which has been reduced to a mean TRE of 2.64 (± 1.20) mm after RIF (p < 0.001).ConclusionsThe integration of an automatic image fusion method for co-registration of pre-operative MRI and iUS data may improve the accuracy in MR-based neuronavigation.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3