Enabling Navigation and Augmented Reality in the Sitting Position in Posterior Fossa Surgery Using Intraoperative Ultrasound

Author:

Bopp Miriam H. A.12ORCID,Grote Alexander1ORCID,Gjorgjevski Marko1,Pojskic Mirza1ORCID,Saß Benjamin1ORCID,Nimsky Christopher12ORCID

Affiliation:

1. Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany

2. Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany

Abstract

Despite its broad use in cranial and spinal surgery, navigation support and microscope-based augmented reality (AR) have not yet found their way into posterior fossa surgery in the sitting position. While this position offers surgical benefits, navigation accuracy and thereof the use of navigation itself seems limited. Intraoperative ultrasound (iUS) can be applied at any time during surgery, delivering real-time images that can be used for accuracy verification and navigation updates. Within this study, its applicability in the sitting position was assessed. Data from 15 patients with lesions within the posterior fossa who underwent magnetic resonance imaging (MRI)-based navigation-supported surgery in the sitting position were retrospectively analyzed using the standard reference array and new rigid image-based MRI-iUS co-registration. The navigation accuracy was evaluated based on the spatial overlap of the outlined lesions and the distance between the corresponding landmarks in both data sets, respectively. Image-based co-registration significantly improved (p < 0.001) the spatial overlap of the outlined lesion (0.42 ± 0.30 vs. 0.65 ± 0.23) and significantly reduced (p < 0.001) the distance between the corresponding landmarks (8.69 ± 6.23 mm vs. 3.19 ± 2.73 mm), allowing for the sufficient use of navigation and AR support. Navigated iUS can therefore serve as an easy-to-use tool to enable navigation support for posterior fossa surgery in the sitting position.

Funder

Open Access Publishing Fund of Philipps-Universität Marburg

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3