Resectable pancreatic ductal adenocarcinoma: association between preoperative CT texture features and metastatic nodal involvement

Author:

Fang Wei Huan,Li Xu Dong,Zhu Hui,Miao Fei,Qian Xiao Hua,Pan Zi Lai,Lin Xiao ZhuORCID

Abstract

Abstract Background To explore the relationship between the lymph node status and preoperative computed tomography images texture features in pancreatic cancer. Methods A total of 155 operable pancreatic cancer patients (104 men, 51 women; mean age 63.8 ± 9.6 years), who had undergone contrast-enhanced computed tomography in the arterial and portal venous phases, were enrolled in this retrospective study. There were 73 patients with lymph node metastases and 82 patients without nodal involvement. Four different data sets, with thin (1.25 mm) and thick (5 mm) slices (at arterial phase and portal venous phase) were analysed. Texture analysis was performed by using MaZda software. A combination of feature selection algorithms was used to determine 30 texture features with the optimal discriminative performance for differentiation between lymph node positive and negative groups. The prediction performance of the selected feature was evaluated by receiver operating characteristic (ROC) curve analysis. Results There were 10 texture features with significant differences between two groups and significance in ROC analysis were identified. They were WavEnLH_s-2(wavelet energy with rows and columns are filtered with low pass and high pass frequency bands with scale factors 2) from wavelet-based features, 135dr_LngREmph (long run emphasis in 135 direction) and 135dr_Fraction (fraction of image in runs in 135 direction) from run length matrix-based features, and seven variables of sum average from coocurrence matrix-based features (SumAverg). The ideal cutoff value for predicting lymph node metastases was 270 for WavEnLH_s-2 (positive likelihood ratio 2.08). In addition, 135dr_LngREmph and 135dr_Fraction were correlated with the ratio of metastatic to examined lymph nodes. Conclusions Preoperative computed tomography high order texture features provide a useful imaging signature for the prediction of nodal involvement in pancreatic cancer.

Funder

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3