Comparison of MRI and CT-based radiomics for preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma

Author:

Zeng Piaoe1,Qu Chao2,Liu Jianfang1,Cui Jingjing3,Liu Xiaoming4,Xiu Dianrong2,Yuan Huishu1ORCID

Affiliation:

1. Department of Radiology, Peking University Third Hospital, Beijing, PR China

2. Department of General Surgery, Peking University Third Hospital, Beijing, PR China

3. Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Beijing, PR China

4. Department of Research and Development, Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, PR China

Abstract

Background The preoperative prediction of lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC) is essential in prognosis and treatment strategy formulation. Purpose To compare the performance of computed tomography (CT) and magnetic resonance imaging (MRI) radiomics models for the preoperative prediction of LNM in PDAC. Material and Methods In total, 160 consecutive patients with PDAC were retrospectively included, who were divided into the training and validation sets (ratio of 8:2). Two radiologists evaluated LNM basing on morphological abnormalities. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, and multiphase contrast enhanced MRI and multiphase CT, respectively. Overall, 1184 radiomics features were extracted from each volume of interest drawn. Only features with an intraclass correlation coefficient ≥0.75 were included. Three sequential feature selection steps—variance threshold, variance thresholding and least absolute shrinkage selection operator—were repeated 20 times with fivefold cross-validation in the training set. Two radiomics models based on multiphase CT and multiparametric MRI were built with the five most frequent features. Model performance was evaluated using the area under the curve (AUC) values. Results Multiparametric MRI radiomics model achieved improved AUCs (0.791 and 0.786 in the training and validation sets, respectively) than that of the CT radiomics model (0.672 and 0.655 in the training and validation sets, respectively) and of the radiologists’ assessment (0.600–0.613 and 0.560–0.587 in the training and validation sets, respectively). Conclusion Multiparametric MRI radiomics model may serve as a potential tool for preoperatively evaluating LNM in PDAC and had superior predictive performance to multiphase CT-based model and radiologists’ assessment.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3