CT-based radiomics models may predict the early efficacy of microwave ablation in malignant lung tumors

Author:

Zhu Fandong,Yang Chen,Xia Yang,Wang Jianping,Zou Jiajun,Zhao Li,Zhao ZhenhuaORCID

Abstract

Abstract Purpose To establish and validate radiomics models for predicting the early efficacy (less than 3 months) of microwave ablation (MWA) in malignant lung tumors. Methods The study enrolled 130 malignant lung tumor patients (72 in the training cohort, 32 in the testing cohort, and 26 in the validation cohort) treated with MWA. Post-operation CT images were analyzed. To evaluate the therapeutic effect of ablation, three models were constructed by least absolute shrinkage and selection operator and logistic regression: the tumoral radiomics (T-RO), peritumoral radiomics (P-RO), and tumoral-peritumoral radiomics (TP-RO) models. Univariate and multivariate analyses were performed to identify clinical variables and radiomics features associated with early efficacy, which were incorporated into the combined radiomics (C-RO) model. The performance of the C-RO model was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA). The C-RO model was used to derive the best cutoff value of ROC and to distinguish the high-risk group (Nomo-score of C-RO model below than cutoff value) from the low-risk group (Nomo-score of C-RO model higher than cutoff value) for survival analysis of patients. Results Four radiomics features were selected from the region of interest of tumoral and peritumoral CT images, which showed good performance for evaluating prognosis and early efficacy in three cohorts. The C-RO model had the highest AUC value in all models, and the C-RO model was better than the P-RO model (AUC in training, 0.896 vs. 0.740; p = 0.036). The DCA confirmed the clinical benefit of the C-RO model. Survival analysis revealed that in the C-RO model, the low-risk group defined by best cutoff value had significantly better progression-free survival than the high-risk group (p<0.05). Conclusions CT-based radiomics models in malignant lung tumor patients after MWA could be useful for individualized risk classification and treatment.

Funder

General Research Project of Zhejiang Provincial Education Department

Zhejiang Provincial Medical and Health Science and Technology Plan Project

Zhejiang Province Public Welfare Technology Application Research Project

Youth Fund Project of Shaoxing People’s Hospital

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3