Predicting Microwave Ablation Early Efficacy in Pulmonary Malignancies via Δ Radiomics Models

Author:

Yang Jing1,Yang Chen2,Feng Jianju3,Zhu Fandong2,Zhao Zhenhua2

Affiliation:

1. School of Medicine, Shaoxing University

2. Department of Radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing

3. Department of Radiology, Zhuji People's Hospital, Zhuji, Zhejiang, China.

Abstract

Objective This study aimed to explore the value of preoperative and postoperative computed tomography (CT)–based radiomic signatures and Δ radiomic signatures for evaluating the early efficacy of microwave ablation (MWA) for pulmonary malignancies. Methods In total, 115 patients with pulmonary malignancies who underwent MWA treatment were categorized into response and nonresponse groups according to relevant guidelines and consensus. Quantitative image features of the largest pulmonary malignancies were extracted from CT noncontrast scan images preoperatively (time point 0, TP0) and immediately postoperatively (time point 1, TP1). Critical features were selected from TP0 and TP1 and as Δ radiomics signatures for building radiomics models. In addition, a combined radiomics model (C-RO) was developed by integrating radiomics parameters with clinical risk factors. Prediction performance was assessed using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results The radiomics model using Δ features outperformed the radiomics model using TP0 and TP1 features, with training and validation AUCs of 0.892, 0.808, and 0.787, and 0.705, 0.825, and 0.778, respectively. By combining the TP0, TP1, and Δ features, the logistic regression model exhibited the best performance, with training and validation AUCs of 0.945 and 0.744, respectively. The DCA confirmed the clinical utility of the Δ radiomics model. Conclusions A combined prediction model, including TP0, TP1, and Δ radiometric features, can be used to evaluate the early efficacy of MWA in pulmonary malignancies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3