Deep learning for semi-automated unidirectional measurement of lung tumor size in CT

Author:

Woo MinJae,Devane A. Michael,Lowe Steven C.,Lowther Ervin L,Gimbel Ronald W.

Abstract

Abstract Background Performing Response Evaluation Criteria in Solid Tumor (RECISTS) measurement is a non-trivial task requiring much expertise and time. A deep learning-based algorithm has the potential to assist with rapid and consistent lesion measurement. Purpose The aim of this study is to develop and evaluate deep learning (DL) algorithm for semi-automated unidirectional CT measurement of lung lesions. Methods This retrospective study included 1617 lung CT images from 8 publicly open datasets. A convolutional neural network was trained using 1373 training and validation images annotated by two radiologists. Performance of the DL algorithm was evaluated 244 test images annotated by one radiologist. DL algorithm’s measurement consistency with human radiologist was evaluated using Intraclass Correlation Coefficient (ICC) and Bland-Altman plotting. Bonferroni’s method was used to analyze difference in their diagnostic behavior, attributed by tumor characteristics. Statistical significance was set at p < 0.05. Results The DL algorithm yielded ICC score of 0.959 with human radiologist. Bland-Altman plotting suggested 240 (98.4 %) measurements realized within the upper and lower limits of agreement (LOA). Some measurements outside the LOA revealed difference in clinical reasoning between DL algorithm and human radiologist. Overall, the algorithm marginally overestimated the size of lesion by 2.97 % compared to human radiologists. Further investigation indicated tumor characteristics may be associated with the DL algorithm’s diagnostic behavior of over or underestimating the lesion size compared to human radiologist. Conclusions The DL algorithm for unidirectional measurement of lung tumor size demonstrated excellent agreement with human radiologist.

Funder

Prisma Health System

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3