Deep learning-based automatic sella turcica segmentation and morphology measurement in X-ray images

Author:

Feng Qi,Liu Shu,Peng Ju-xiang,Yan Ting,Zhu Hong,Zheng Zhi-jun,Feng Hong-chao

Abstract

Abstract Background Although the morphological changes of sella turcica have been drawing increasing attention, the acquirement of linear parameters of sella turcica relies on manual measurement. Manual measurement is laborious, time-consuming, and may introduce subjective bias. This paper aims to develop and evaluate a deep learning-based model for automatic segmentation and measurement of sella turcica in cephalometric radiographs. Methods 1129 images were used to develop a deep learning-based segmentation network for automatic sella turcica segmentation. Besides, 50 images were used to test the generalization ability of the model. The performance of the segmented network was evaluated by the dice coefficient. Images in the test datasets were segmented by the trained segmentation network, and the segmentation results were saved in binary images. Then the extremum points and corner points were detected by calling the function in the OpenCV library to obtain the coordinates of the four landmarks of the sella turcica. Finally, the length, diameter, and depth of the sella turcica can be obtained by calculating the distance between the two points and the distance from the point to the straight line. Meanwhile, images were measured manually using Digimizer. Intraclass correlation coefficients (ICCs) and Bland–Altman plots were used to analyze the consistency between automatic and manual measurements to evaluate the reliability of the proposed methodology. Results The dice coefficient of the segmentation network is 92.84%. For the measurement of sella turcica, there is excellent agreement between the automatic measurement and the manual measurement. In Test1, the ICCs of length, diameter and depth are 0.954, 0.953, and 0.912, respectively. In Test2, ICCs of length, diameter and depth are 0.906, 0.921, and 0.915, respectively. In addition, Bland–Altman plots showed the excellent reliability of the automated measurement method, with the majority measurements differences falling within ± 1.96 SDs intervals around the mean difference and no bias was apparent. Conclusions Our experimental results indicated that the proposed methodology could complete the automatic segmentation of the sella turcica efficiently, and reliably predict the length, diameter, and depth of the sella turcica. Moreover, the proposed method has generalization ability according to its excellent performance on Test2.

Funder

Science and technology bureau of guanshanhu district

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3