SellaMorph-Net: A Novel Machine Learning Approach for Precise Segmentation of Sella Turcica Complex Structures in Full Lateral Cephalometric Images

Author:

Shakya Kaushlesh Singh123ORCID,Jaiswal Manojkumar4ORCID,Porteous Julie3ORCID,K Priti12,Kumar Vinay4ORCID,Alavi Azadeh3ORCID,Laddi Amit2

Affiliation:

1. Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India

2. CSIR—Central Scientific Instruments Organisation, Chandigarh 160030, India

3. School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia

4. Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India

Abstract

Background: The Sella Turcica is a critical structure from an orthodontic perspective, and its morphological characteristics can help in understanding craniofacial deformities. However, accurately extracting Sella Turcica shapes can be challenging due to the indistinct edges and indefinite boundaries present in X-ray images. This study aimed to develop and validate an automated Sella Morphology Network (SellaMorph-Net), a hybrid deep learning pipeline for segmenting Sella Turcica structure and extracting different morphological types; Methods: The SellaMorph-Net model proposed in this study combined attention-gating and recurrent residual convolutional layers (AGM and RrCL) to enhance the encoder’s abilities. The model’s output was then passed through a squeeze-and-excitation (SE) module to improve the network’s robustness. In addition, dropout layers were added to the end of each convolution block to prevent overfitting. A Zero-shot classifier was employed for multiple classifications, and the model’s output layer used five colour codes to represent different morphological types. The model’s performance was evaluated using various quantitative metrics, such as global accuracy and mean pixel-wise Intersection over Union (IoU) and dice coefficient, based on qualitative results; Results: The study collected 1653 radiographic images and categorised them into four classes based on the predefined shape of Sella Turcica. These classes were further divided into three subgroups based on the complexity of the Sella structures. The proposed SellaMorph-Net model achieved a global accuracy of 97.570, mean pixel-wise IoU scores of 0.7129, and a dice coefficient of 0.7324, significantly outperforming the VGG-19 and InceptionV3 models. The publicly available IEEE ISBI 2015 challenge dataset and our dataset were used to evaluate the test performance between the state-of-the-art and proposed models. The proposed model provided higher testing results, which were 0.7314 IoU and 0.7768 dice for our dataset and 0.7864 IoU and 0.8313 dice for the challenge dataset; Conclusions: The proposed hybrid SellaMorph-Net model provides an accurate and reliable pipeline for detecting morphological types of Sella Turcica using full lateral cephalometric images. Future work will focus on further improvement and utilisation of the developed model as a prognostic tool for predicting anomalies related to Sella structures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3