Identification of DNA methylation-regulated genes as potential biomarkers for coronary heart disease via machine learning in the Framingham Heart Study

Author:

Zhang Xiaokang,Wang Chen,He Dingdong,Cheng Yating,Yu Li,Qi Daoxi,Li Boyu,Zheng Fang

Abstract

Abstract Background DNA methylation-regulated genes have been demonstrated as the crucial participants in the occurrence of coronary heart disease (CHD). The machine learning based on DNA methylation-regulated genes has tremendous potential for mining non-invasive predictive biomarkers and exploring underlying new mechanisms of CHD. Results First, the 2085 age-gender-matched individuals in Framingham Heart Study (FHS) were randomly divided into training set and validation set. We then integrated methylome and transcriptome data of peripheral blood leukocytes (PBLs) from the training set to probe into the methylation and expression patterns of CHD-related genes. A total of five hub DNA methylation-regulated genes were identified in CHD through dimensionality reduction, including ATG7, BACH2, CDKN1B, DHCR24 and MPO. Subsequently, methylation and expression features of the hub DNA methylation-regulated genes were used to construct machine learning models for CHD prediction by LightGBM, XGBoost and Random Forest. The optimal model established by LightGBM exhibited favorable predictive capacity, whose AUC, sensitivity, and specificity were 0.834, 0.672, 0.864 in the validation set, respectively. Furthermore, the methylation and expression statuses of the hub genes were verified in monocytes using methylation microarray and transcriptome sequencing. The methylation statuses of ATG7, DHCR24 and MPO and the expression statuses of ATG7, BACH2 and DHCR24 in monocytes of our study population were consistent with those in PBLs from FHS. Conclusions We identified five DNA methylation-regulated genes based on a predictive model for CHD using machine learning, which may clue the new epigenetic mechanism for CHD.

Funder

National Natural Science Foundation of China

Translation Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University

Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3