Prediction of methylation status using WGS data of plasma cfDNA for multi-cancer early detection (MCED)
-
Published:2024-02-27
Issue:1
Volume:16
Page:
-
ISSN:1868-7083
-
Container-title:Clinical Epigenetics
-
language:en
-
Short-container-title:Clin Epigenet
Author:
Cui Pin,Zhou Xiaozhou,Xu Shu,He Weihuang,Huang Guozeng,Xiong Yong,Zhang Chuxin,Chang Tingmin,Feng Mingji,Lai Hanming,Pan Yi
Abstract
Abstract
Background
Cell-free DNA (cfDNA) contains a large amount of molecular information that can be used for multi-cancer early detection (MCED), including changes in epigenetic status of cfDNA, such as cfDNA fragmentation profile. The fragmentation of cfDNA is non-random and may be related to cfDNA methylation. This study provides clinical evidence for the feasibility of inferring cfDNA methylation levels based on cfDNA fragmentation patterns. We performed whole-genome bisulfite sequencing and whole-genome sequencing (WGS) on both healthy individuals and cancer patients. Using the information of whole-genome methylation levels, we investigated cytosine–phosphate–guanine (CpG) cleavage profile and validated the method of predicting the methylation level of individual CpG sites using WGS data.
Results
We conducted CpG cleavage profile biomarker analysis on data from both healthy individuals and cancer patients. We obtained unique or shared potential biomarkers for each group and built models accordingly. The modeling results proved the feasibility to predict the methylation status of single CpG sites in cfDNA using cleavage profile model from WGS data.
Conclusion
By combining cfDNA cleavage profile of CpG sites with machine learning algorithms, we have identified specific CpG cleavage profile as biomarkers to predict the methylation status of individual CpG sites. Therefore, methylation profile, a widely used epigenetic biomarker, can be obtained from a single WGS assay for MCED.
Funder
Shenzhen Science and Technology Innovation Program Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, Bruhm DC, Niknafs N, Ferreira L, Adleff V, Chiao JY, Leal A, Noe M, White JR, Arun AS, Hruban C, Annapragada AV, Jensen SØ, Ørntoft MW, Madsen AH, Carvalho B, de Wit M, Carey J, Dracopoli NC, Maddala T, Fang KC, Hartman AR, Forde PM, Anagnostou V, Brahmer JR, Fijneman RJA, Nielsen HJ, Meijer GA, Andersen CL, Mellemgaard A, Bojesen SE, Scharpf RB, Velculescu VE. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun. 2021;12(1):5060. 2. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385–9. 3. Jiang P, Chan CW, Chan KC, Cheng SH, Wong J, Wong VW, Wong GL, Chan SL, Mok TS, Chan HL, Lai PB, Chiu RW, Lo YM. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A. 2015;112(11):E1317–25. 4. Jiang P, Sun K, Tong YK, Cheng SH, Cheng THT, Heung MMS, Wong J, Wong VWS, Chan HLY, Chan KCA, Lo YMD, Chiu RWK. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2018;115(46):E10925–33. 5. Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616.
|
|