Detection and characterization of lung cancer using cell-free DNA fragmentomes

Author:

Mathios Dimitrios,Johansen Jakob SideniusORCID,Cristiano Stephen,Medina Jamie E.,Phallen JillianORCID,Larsen Klaus R.,Bruhm Daniel C.,Niknafs Noushin,Ferreira Leonardo,Adleff Vilmos,Chiao Jia Yuee,Leal AlessandroORCID,Noe Michael,White James R.,Arun Adith S.,Hruban Carolyn,Annapragada Akshaya V.ORCID,Jensen Sarah ØstrupORCID,Ørntoft Mai-Britt Worm,Madsen Anders Husted,Carvalho BeatrizORCID,de Wit Meike,Carey Jacob,Dracopoli Nicholas C.,Maddala Tara,Fang Kenneth C.,Hartman Anne-Renee,Forde Patrick M.,Anagnostou ValsamoORCID,Brahmer Julie R.,Fijneman Remond J. A.ORCID,Nielsen Hans Jørgen,Meijer Gerrit A.,Andersen Claus LindbjergORCID,Mellemgaard Anders,Bojesen Stig E.ORCID,Scharpf Robert B.ORCID,Velculescu Victor E.ORCID

Abstract

AbstractNon-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.

Funder

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

SU2C in-Time Lung Cancer Interception Dream Team Grant, Stand Up to Cancer-Dutch Cancer Society International Translational Cancer Research Dream Team Grant

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 228 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3