Weight loss after Roux-En-Y gastric bypass surgery reveals skeletal muscle DNA methylation changes

Author:

Garcia Luis A.,Day Samantha E.,Coletta Richard L.,Campos Baltazar,Benjamin Tonya R.,De Filippis Eleanna,Madura James A.,Mandarino Lawrence J.,Roust Lori R.,Coletta Dawn K.ORCID

Abstract

Abstract Background The mechanisms of weight loss and metabolic improvements following bariatric surgery in skeletal muscle are not well known; however, epigenetic modifications are likely to contribute. The aim of our study was to investigate skeletal muscle DNA methylation after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Muscle biopsies were obtained basally from seven insulin-resistant obese (BMI > 40 kg/m2) female subjects (45.1 ± 3.6 years) pre- and 3-month post-surgery with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. Four lean (BMI < 25 kg/m2) females (38.5 ± 5.8 years) served as controls. We performed reduced representation bisulfite sequencing next generation methylation on DNA isolated from the vastus lateralis muscle biopsies. Results Global methylation was significantly higher in the pre- (32.97 ± 0.02%) and post-surgery (33.31 ± 0.02%) compared to the lean (30.46 ± 0.02%), P < 0.05. MethylSig analysis identified 117 differentially methylated cytosines (DMCs) that were significantly altered in the post- versus pre-surgery (Benjamini–Hochberg q < 0.05). In addition, 2978 DMCs were significantly altered in the pre-surgery obese versus the lean controls (Benjamini–Hochberg q < 0.05). For the post-surgery obese versus the lean controls, 2885 DMCs were altered (Benjamini–Hochberg q < 0.05). Seven post-surgery obese DMCs were normalized to levels similar to those observed in lean controls. Of these, 5 were within intergenic regions (chr11.68,968,018, chr16.73,100,688, chr5.174,115,531, chr5.1,831,958 and chr9.98,547,011) and the remaining two DMCs chr17.45,330,989 and chr14.105,353,824 were within in the integrin beta 3 (ITGB3) promoter and KIAA0284 exon, respectively. ITGB3 methylation was significantly decreased in the post-surgery (0.5 ± 0.5%) and lean controls (0 ± 0%) versus pre-surgery (13.6 ± 2.7%, P < 0.05). This decreased methylation post-surgery was associated with an increase in ITGB3 gene expression (fold change + 1.52, P = 0.0087). In addition, we showed that ITGB3 promoter methylation in vitro significantly suppressed transcriptional activity (P < 0.05). Transcription factor binding analysis for ITGB3 chr17.45,330,989 identified three putative transcription factor binding motifs; PAX-5, p53 and AP-2alphaA. Conclusions These results demonstrate that weight loss after RYGB alters the epigenome through DNA methylation. In particular, this study highlights ITGB3 as a novel gene that may contribute to the metabolic improvements observed post-surgery. Future additional studies are warranted to address the exact mechanism of ITGB3 in skeletal muscle.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3