Abstract
AbstractPlanktonic bacteria and archaea play a key role in maintaining ecological functions in aquatic ecosystems; however, their biogeographic patterns and underlying mechanisms have not been well known in coastal wetlands including multiple types and at a large space scale. Therefore, planktonic bacteria and archaea and related environmental factors were investigated in twenty-one wetlands along China’s coast to understand the above concerns. The results indicated that planktonic bacteria had different biogeographic pattern from planktonic archaea, and both patterns were not dependent on the wetland's types. Deterministic selection shapes the former’s community structure, whereas stochastic processes regulate the latter’s, being consistent with the fact that planktonic archaea have a larger niche breadth than planktonic bacteria. Planktonic bacteria and archaea co-occur, and their co-occurrence rather than salinity is more important in shaping their community structure although salinity is found to be a main environmental deterministic factor in the coastal wetland waters. This study highlights the role of planktonic bacteria-archaea co-occurrence on their biogeographic patterns, and thus provides a new insight into studying underlying mechanisms of microbial biogeography in coastal wetlands.
Funder
national natural science foundation of china
key technologies research and development program
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Applied Microbiology and Biotechnology,Microbiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献