Effects of the rice-mushroom rotation pattern on soil properties and microbial community succession in paddy fields

Author:

Hao Haibo,Yue Yihong,Wang Qian,Xiao Tingting,Zhao Zelong,Zhang Jinjing,Chen Hui

Abstract

IntroductionCurrently, straw biodegradation and soil improvement in rice-mushroom rotation systems have attracted much attention. However, there is still a lack of studies on the effects of rice-mushroom rotation on yield, soil properties and microbial succession.MethodsIn this study, no treatment (CK), green manure return (GM) and rice straw return (RS) were used as controls to fully evaluate the effect of Stropharia rugosoannulata cultivation substrate return (SRS) on soil properties and microorganisms.ResultsThe results indicated that rice yield, soil nutrient (organic matter, organic carbon, total nitrogen, available nitrogen and available potassium) and soil enzyme (urease, saccharase, lignin peroxidase and laccase) activities had positive responses to the rice-mushroom rotation. At the interannual level, microbial diversity varied significantly among treatments, with the rice-mushroom rotation significantly increasing the relative alpha diversity index of soil bacteria and enriching beneficial microbial communities such as Rhizobium, Bacillus and Trichoderma for rice growth. Soil nutrients and enzymatic activities were significantly correlated with microbial communities during rice-mushroom rotation. The fungal-bacterial co-occurrence networks were modular, and Latescibacterota, Chloroflexi, Gemmatimonadota and Patescibacteria were closely related to the accumulation of nutrients in the soil. The structural equation model (SEM) showed that fungal diversity responded more to changes in soil nutrients than did bacterial diversity.DiscussionOverall, the rice-mushroom rotation model improved soil nutrients and rice yields, enriched beneficial microorganisms and maintained microbial diversity. This study provides new insights into the use of S. rugosoannulata cultivation substrates in the sustainable development of agroecosystems.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3