Land use modification causes slow, but predictable, change in soil microbial community composition and functional potential

Author:

Louisson Z.,Hermans S. M.,Buckley H. L.,Case B. S.,Taylor M.,Curran-Cournane F.,Lear G.

Abstract

Abstract Background Bacterial communities are critical to ecosystem functioning and sensitive to their surrounding physiochemical environment. However, the impact of land use change on microbial communities remains understudied. We used 16S rRNA gene amplicon sequencing and shotgun metagenomics to assess soil microbial communities' taxonomic and functional responses to land use change. We compared data from long-term grassland, exotic forest and horticulture reference sites to data from sites that transitioned from (i) Grassland to exotic forest or horticulture and from (ii) Exotic forest to grassland. Results Community taxonomic and functional profiles of the transitional sites significantly differed from those within reference sites representing both their historic and current land uses (P < 0.001). The bacterial communities in sites that transitioned more recently were compositionally more similar to those representing their historic land uses. In contrast, the composition of communities from sites exposed to older conversion events had shifted towards the compositions at reference sites representing their current land use. Conclusions Our study indicates that microbial communities respond in a somewhat predictable way after a land use conversion event by shifting from communities reflecting their former land use towards those reflecting their current land use. Our findings help us to better understand the legacy effects of land use change on soil microbial communities and implications for their role in soil health and ecosystem functioning. Understanding the responsiveness of microbial communities to environmental disturbances will aid us in incorporating biotic variables into soil health monitoring techniques in the future.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3