Author:
Voza Tatiana,Kebaier Chahnaz,Vanderberg Jerome P
Abstract
Abstract
Background
Intravenous injection of mice with attenuated Plasmodium berghei sporozoites induces sterile immunity to challenge with viable sporozoites. Non-intravenous routes have been reported to yield poor immunity. Because intravenous immunization has been considered to be unacceptable for large scale vaccination of humans, assessment was made of the results of intradermal immunization of mice with Plasmodium yoelii, a rodent malaria parasite whose infectivity resembles that of human malaria.
Methods
Mice were immunized with two injections of isolated, radiation-attenuated P. yoelii sporozoites, either by intravenous (IV) or intradermal (ID) inoculation. In an attempt to enhance protective immunogenicity of ID-injections, one group of experimental mice received topical application of an adjuvant, Imiquimod, while another group had their injections accompanied by local "tape-stripping" of the skin, a procedure known to disrupt the stratum corneum and activate local immunocytes. Challenge of immunized and non-immunized control mice was by bite of sporozoite-infected mosquitoes. Degree of protection among the various groups of mice was determined by microscopic examination of stained blood smears. Statistical significance of protection was determined by a one-way ANOVA followed by Tukey's post hoc test.
Results
Two intravenous immunizations produced 94% protection to mosquito bite challenge; intradermal immunization produced 78% protection, while intradermal immunization accompanied by "tape-stripping" produced 94% protection. There were no statistically significant differences in degree of protective immunity between immunizations done by intravenous versus intradermal injection.
Conclusions
The use of a sub-microlitre syringe for intradermal injections yielded excellent protective immunity. ID-immunization with large numbers of radiation-attenuated P. yoelii sporozoites led to levels of protective immunity comparable to those achieved by IV-immunization. It remains to be determined whether an adjuvant treatment can be found to substantially reduce the numbers of attenuated sporozoites required to achieve a strong protective immunity with as few doses as possible for possible extension to immunization of humans.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference28 articles.
1. Nussenzweig RS, Vanderberg J, Most H, Orton C: Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature. 1967, 216: 160-162. 10.1038/216160a0.
2. Vanderberg JP, Nussenzweig RS, Most H, Orton CG: Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol. 1968, 54: 1175-1180. 10.2307/3276987.
3. Spitalny GL, Nussenzweig RS: Effects of various routes of immunization and methods of parasite attenuation on the development of protection against sporozoite-induced rodent malaria. Mil Med. 1972, 39 (Special): 506-514.
4. Kramer LD, Vanderberg JP: Intramuscular immunization of mice with irradiated Plasmodium berghei sporozoites. Enhancement of protection with albumin. Am J Trop Med Hyg. 1975, 24 (6 Pt 1): 913-916.
5. Vanderberg JP, Nussenzweig RS, Most H: Protective immunity produced by the bite of X-irradiated mosquitoes infected with Plasmodium berghei. J Parasitol. 1970, 56 (Section II): 350-351.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献