Affiliation:
1. University of Washington
2. Seattle Children's Research Institute
3. Sanaria Inc
4. Columbia University
Abstract
Abstract
Malaria is caused by Plasmodium parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8+ T cells. Such T cells can be induced by ‘prime-and-trap’ vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to “trap” the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10–50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Funder
National Institutes of Health
Publisher
Research Square Platform LLC
Reference74 articles.
1. World Health Organization. World malaria report 2022. Geneva, Switzerland: World Health Organization; 2022 December 8, 2022.
2. Pre-Erythrocytic Vaccines against Malaria;Marques-da-Silva C;Vaccines (Basel),2020
3. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria;Itsara LS;Front Immunol,2018
4. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine;Seder RA;Science,2013
5. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines;Richie TL;Vaccine,2015