Author:
Jensen Trevor P,Bukirwa Hasifa,Njama-Meya Denise,Francis Damon,Kamya Moses R,Rosenthal Philip J,Dorsey Grant
Abstract
Abstract
Background
As malaria control efforts intensify, it is critical to monitor trends in disease burden and measure the impact of interventions. A key surveillance indicator is the incidence of malaria. Yet measurement of incidence is challenging. The slide positivity rate (SPR) has been used as a surrogate measure of malaria incidence, but limited data exist on the relationship between SPR and the incidence of malaria.
Methods
A cohort of 690 children aged 1-10 years at enrollment were followed for all their health care needs over a four-year period in Kampala, Uganda. All children with fever underwent laboratory testing, allowing us to measure the incidence of malaria and non-malaria fevers. A formula was derived to estimate relative changes in the incidence of malaria (rΔIm) based on changes in the SPR and the assumption that the incidence of non-malaria fevers was consistent over time. Observed and estimated values of rΔIm were compared over two, six, and 12 month time intervals after restricting the analysis to children contributing observation time between the ages of 4-10 years to control for aging of the cohort.
Results
Over the four-year observation period the incidence of malaria declined significantly from 0.93 episodes per person-year in 2005 to 0.39 episodes per person-year in 2008 (p < 0.0001) and the incidence of non-malaria fevers declined significantly from 2.31 episodes per person-year in 2005 to 1.31 episodes per person-year in 2008 (p < 0.0001). Younger age was associated with a significantly greater incidence of malaria and the incidence of malaria was significantly higher during seasonal peaks occurring each January-February and May-June. Changes in SPR produced reasonably accurate estimates of rΔIm over all time intervals. The average absolute difference in observed and estimated values of rΔIm was lower for six-month intervals (0.13) than it was for two-month (0.21) or 12 month intervals (0.21).
Conclusion
Changes in SPR provided a useful estimate of changes in the incidence of malaria in a well defined cohort; however, a gradual decline in the incidence of non-malaria fevers introduced some bias in these estimates.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference13 articles.
1. World Health Organization: World malaria report. Technical document. 2008, WHO/HTM/GMP/2008.1
2. World Health Organization: 58th World Health Assembly. Technical document. 2005, Resolution WHA58.2
3. Breman JG, Holloway CN: Malaria surveillance counts. Am J Trop Med Hyg. 2007, 77 (6 Suppl): 36-47. 10.1016/S1473-3099(04)01043-6.
4. Cibulskis RE, Bell D, Christophel EM, Hii J, Delacollette C, Bakyaita N, Aregawi MW: Estimating trends in the burden of malaria at country level. Am J Trop Med Hyg. 2007, 77 (6 Suppl): 133-137.
5. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW: The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004, 4 (6): 327-336. 10.1016/S0140-6736(08)61654-2.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献