Author:
Kaiser Maria L,Koekemoer Lizette L,Coetzee Maureen,Hunt Richard H,Brooke Basil D
Abstract
Abstract
Background
Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch.
Methods
Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations.
Results
Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes.
Conclusions
An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance mechanisms whose effectiveness may be enhanced by intra-population variation in the expression of resistance phenotypes. The variation in the expression of insecticide resistance in association with selection for larval time-to-hatch may induce this kind of enhanced adaptive plasticity as a consequence of pleiotropy, whereby mosquitoes are able to complete their aquatic life stages in a variable breeding environment using staggered larval time-to-hatch, giving rise to an adult population with enhanced variation in the expression of insecticide resistance.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference28 articles.
1. World Malaria Report 2005: Geneva. [http://www.rbm.who.int/wmr2005/profiles/ghana.pdf]
2. Vezenegho S, Brooke BD, Hunt RH, Coetzee M, Koekemoer LL: Malaria vector mosquito composition and insecticide susceptibility status in Guinea Conakry, West Africa. Med Vet Entomol. 2009, 23: 326-334. 10.1111/j.1365-2915.2009.00840.x.
3. Touré YT, Traore PV, Coulibaly SF, Maiga A, Sankaré O, Sow M, Di Deco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognized taxa of Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998, 40: 477-511.
4. Favia GA, della Torre A, Bagayoko M, Lanfrancotti L, Touré YT, Coluzzi M: Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence for their reproductive isolation. Insect Mol Biol. 1997, 6: 377-383. 10.1046/j.1365-2583.1997.00189.x.
5. Slotman MA, Tripet F, Cornell AJ, Meneses CR, Lee Y, Reimer LJ, Thiemann TC, Fondjo E, Fofana A, Traoré S, Lanzaro GC: Evidence for subdivision within the M molecular form of Anopheles gambiae. Mol Ecol. 2007, 16: 639-649. 10.1111/j.1365-294X.2006.03172.x.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献