Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS)

Author:

Riedel Nadine,Vounatsou Penelope,Miller John M,Gosoniu Laura,Chizema-Kawesha Elizabeth,Mukonka Victor,Steketee Rick W

Abstract

Abstract Background The Zambia Malaria Indicator Survey (ZMIS) of 2006 was the first nation-wide malaria survey, which combined parasitological data with other malaria indicators such as net use, indoor residual spraying and household related aspects. The survey was carried out by the Zambian Ministry of Health and partners with the objective of estimating the coverage of interventions and malaria related burden in children less than five years. In this study, the ZMIS data were analysed in order (i) to estimate an empirical high-resolution parasitological risk map in the country and (ii) to assess the relation between malaria interventions and parasitaemia risk after adjusting for environmental and socio-economic confounders. Methods The parasitological risk was predicted from Bayesian geostatistical and spatially independent models relating parasitaemia risk and environmental/climatic predictors of malaria. A number of models were fitted to capture the (potential) non-linearity in the malaria-environment relation and to identify the elapsing time between environmental effects and parasitaemia risk. These models included covariates (a) in categorical scales and (b) in penalized and basis splines terms. Different model validation methods were used to identify the best fitting model. Model-based risk predictions at unobserved locations were obtained via Bayesian predictive distributions for the best fitting model. Results Model validation indicated that linear environmental predictors were able to fit the data as well as or even better than more complex non-linear terms and that the data do not support spatial dependence. Overall the averaged population-adjusted parasitaemia risk was 20.0% in children less than five years with the highest risk predicted in the northern (38.3%) province. The odds of parasitaemia in children living in a household with at least one bed net decreases by 40% (CI: 12%, 61%) compared to those without bed nets. Conclusions The map of parasitaemia risk together with the prediction error and the population at risk give an important overview of the malaria situation in Zambia. These maps can assist to achieve better resource allocation, health management and to target additional interventions to reduce the burden of malaria in Zambia significantly. Repeated surveys will enable the evaluation of the effectiveness of on-going interventions.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference24 articles.

1. Ministry of Health: 2008 National malaria control action plan: actions for scale-up for impact on malaria in Zambia. Zambia. 2008, [http://www.nmcc.org.zm/publications.htm]

2. Ministry of Health: A road map for impact on malaria in Zambia 2006-2010: a 5-year strategic plan. Zambia. 2006, [http://www.nmcc.org.zm/publications.htm]

3. Campbell K, Terry D, Wood S: Scaling up for impact: a model for malaria control. Zambia. 2007, [http://www.path.org/files/MACEPA_Bro_2007-08-06.pdf]

4. Ministry of Health: 2009 National malaria control action plan: actions for scale-up for impact on malaria in Zambia. Zambia. 2009

5. Ministry of Health, Zambia Central Statistical Office, PATH, MACEPA, CDC, University of Zambia, WHO: Zambia National Malaria Indicator Survey 2006. Zambia. 2006, [http://www.nmcc.org.zm/publications.htm]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3