Spatial Optimization Methods for Malaria Risk Mapping in Sub‐Saharan African Cities Using Demographic and Health Surveys

Author:

Morlighem Camille12ORCID,Chaiban Celia12,Georganos Stefanos3,Brousse Oscar45ORCID,van Lipzig Nicole P. M.5ORCID,Wolff Eléonore6,Dujardin Sébastien12,Linard Catherine127

Affiliation:

1. Department of Geography University of Namur Namur Belgium

2. ILEE University of Namur Namur Belgium

3. Geomatics Unit Department of Environmental and Life Sciences Karlstad University Karlstad Sweden

4. Institute of Environmental Design and Engineering University College London London UK

5. Department of Earth and Environmental Sciences Katholieke Universiteit Leuven Leuven Belgium

6. Department of Geoscience, Environment & Society Université Libre de Bruxelles Brussels Belgium

7. NARILIS University of Namur Namur Belgium

Abstract

AbstractVector‐borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub‐Saharan Africa (SSA). In this context, intra‐urban malaria risk maps act as a key decision‐making tool for targeting malaria control interventions, especially in resource‐limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra‐urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra‐urban malaria risk in SSA cities—Dakar, Dar es Salaam, Kampala and Ouagadougou—and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%–40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra‐urban scale.

Funder

Belgian Federal Science Policy Office

Wellcome Trust

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3