Author:
Brilhante Otávio,Okada Fatima K,Sasso-Cerri Estela,Stumpp Taiza,Miraglia Sandra M
Abstract
Abstract
Background
Doxorubicin is a potent chemotherapeutic drug used against a variety of cancers. It acts through interaction with polymerases and topoisomerase II and free radical production. Doxorubicin activity is not specific to cancer cells and can also damage healthy cells, especially those undergoing rapid proliferation, such as spermatogonia. In previous studies our group showed that etoposide, another topoisomarese II poison, causes irreversible damage to Sertoli cells. Thus, the aim of this study was to address the effects of doxorubicin on Sertoli cell morphology and function and on the seminiferous epithelium cycle when administered to prepubertal rats.
Methods
Prepubertal rats received the dose of 5 mg/Kg of doxorubicin, which was fractioned in two doses: 3 mg/Kg at 15dpp and 2 mg/Kg at 22dpp. The testes were collected at 40, 64 and 127dpp, fixed in Bouin’s liquid and submitted to transferrin immunolabeling for Sertoli cell function analysis. Sertoli cell morphology and the frequency of the stages of the seminiferous epithelium cycle were analyzed in PAS + H-stained sections.
Results
The rats treated with doxorubicin showed reduction of transferrin labeling in the seminiferous epithelium at 40 and 64dpp, suggesting that Sertoli cell function is altered in these rats. All doxorubicin-treated rats showed sloughing and morphological alterations of Sertoli cells. The frequency of the stages of the seminiferous epithelium cycle was also affected in all doxorubicin-treated rats.
Conclusions and discussion
These data show that doxorubicin administration during prepuberty causes functional and morphological late damage to Sertoli cells; such damage is secondary to the germ cell primary injury and contributed to enhance the spermatogenic harm caused by this drug. However, additional studies are required to clarify if there is also a direct effect of doxorubicin on Sertoli cells producing a primary damage on these cells.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynaecology
Reference81 articles.
1. Hida H, Coudray C, Calop J, Favier A: Effect of antioxidants on adriamycin-induced microsomal lipid peroxidation. Biol Trace Elem Res. 1995, 47: 111-116.
2. Jahnukainen K, Hou M, Parvinen M, Eksborg S, Söder O: Stage-specific inhibition of deoxyribonucleic acid synthesis and induction of apoptosis by anthracyclines in cultured rat spermatogenic cells. Biol Reprod. 2000, 63: 482-487.
3. Suominen JS, Linderborg J, Nikula H, Hakovirta H, Parvinen M, Toppari J: The effects of mono-2-ethylhexyl phthalate, adriamycin and N-ethyl-Nitrosourea on stage-specific apoptosis and DNA synthesis in the mouse spermatogenesis. Toxicol Lett. 2003, 143: 163-173.
4. Calabresi P, Parks RE: Quimioterapia das doenças neoplásicas. As bases farmacológicas da terapêutica. Edited by: Gilman AG, Goodman LS, Rall TW, Murad F. 1985, Rio de Janeiro, Guanabara-Koogan, 813-856.
5. Gewirtz DA: A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999, 57: 727-741.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献