Concentrations of osmotically related constituents in plasma and urine of finless porpoise (Neophocaena asiaeorientalis): implications for osmoregulatory strategies for marine mammals living in freshwater

Author:

Guo Aihuan,Hao Yujiang,Wang Jingzhen,Zhao Qingzhong,Wang Ding

Abstract

Abstract Background Most cetaceans inhabit the hyperosmotic marine environment with only a few species living in freshwater habitats. The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is the only freshwater subspecies of the genus. Our aim was to study whether the osmoregulation mechanism of the Yangtze finless porpoise is different from the marine subspecies, the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri). We assayed and compared the concentrations of the constituents involved in osmoregulation in the blood and urine in the Yangtze finless porpoise and the East Asian finless porpoise. We also compared the corresponding urine constituents of the porpoises with existing data on fin whales (Balaenoptera physalus) and bottlenose dolphins (Tursiops truncatus). Results The mean plasma osmolality of Yangtze finless porpoise was significantly lower than that of the marine subspecies (P < 0.01). Similarly, the urine osmolality of Yangtze finless porpoise was also significantly lower than that of its marine counterpart (P < 0.05). However, the urine sodium concentration of freshwater finless porpoise was significantly lower than that in the marine subspecies (P < 0.01), even though their serum sodium has no significant difference. Moreover, the freshwater porpoise has significantly lower urine urea concentration but much higher serum urea than in the marine finless porpoise (P < 0.05). Conclusions These results suggest that the freshwater finless porpoise does have different osmoregulatory mechanism from marine cetaceans. Conserving sodium by excreting urine with low ion levels may be an essential strategy to maintain the serum electrolyte balance for the freshwater subspecies that also appears to be more susceptible to hyponatremia.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

Reference34 articles.

1. Birukawa N, Ando H, Goto M, Kanda N, Pastene LA, Nakatsuji H, Hata H, Urano A: Plasma and urine levels of electrolytes, urea and steroid hormones involved in osmoregulation of cetaceans. Zool Sci 2005,22(11):1245–1257. 10.2108/zsj.22.1245

2. Birukawa N, Ando H, Goto M, Kanda N, Pastene LA, Urano A: Molecular cloning of urea transporters from the kidneys of baleen and toothed whales. Comp Biochem Physiol B Biochem Mol Biol 2008, 149: 227–235. 10.1016/j.cbpb.2006.11.033

3. Bossart GD, Reidarson TH, Dierauf LA, Duffield DA: Clinical pathology. In CRC handbook of marine mammal medicine. Boca Raton: CRC; 2001.

4. Costa D: Osmoregulation. In Encyclopedia of marine mammals. New York: Academic Press; 2002.

5. Daniels R: Delmar’s manual of laboratory and diagnostic tests. Delmar: Thomson Learning Inc; 2003.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kidneys and osmoregulation;The Physiology of Dolphins;2024

2. Osmoregulation by Vertebrates in Aquatic Environments;eLS;2021-07-08

3. Reviewers in 2020;Proceedings of the Royal Society B: Biological Sciences;2021-04-07

4. Osmoregulatory ability predicts geographical range size in marine amniotes;Proceedings of the Royal Society B: Biological Sciences;2021-04-07

5. Hematology, serum, and urine composition;The Bowhead Whale;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3