Osmoregulatory ability predicts geographical range size in marine amniotes

Author:

Brischoux François1ORCID,Lillywhite Harvey B.2ORCID,Shine Richard3ORCID,Pinaud David1ORCID

Affiliation:

1. Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France

2. Department of Biology, University of Florida, Gainesville, FL, USA

3. Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia

Abstract

Species that are distributed over wide geographical ranges are likely to encounter a greater diversity of environmental conditions than do narrowly distributed taxa, and thus we expect a correlation between size of geographical range and breadth of physiological tolerances to abiotic challenges. That correlation could arise either because higher physiological capacity enables range expansion, or because widely distributed taxa experience more intense (but spatially variable) selection on physiological tolerances. The invasion of oceanic habitats by amniotic vertebrates provides an ideal system with which to test the predicted correlation between range size and physiological tolerances, because all three lineages that have secondarily moved into marine habitats (mammals, birds, reptiles) exhibit morphological and physiological adaptations to excrete excess salt. Our analyses of data on 62 species (19 mammals, 18 birds, 24 reptiles) confirm that more-widely distributed taxa encounter habitats with a wider range of salinities, and that they have higher osmoregulatory ability as determined by sodium concentrations in fluids expelled from salt-excreting organs. This result remains highly significant even in models that incorporate additional explanatory variables such as metabolic mode, body size and dietary habits. Physiological data thus may help to predict potential range size and perhaps a species' vulnerability to anthropogenic disturbance.

Funder

ANR

CNRS

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3