The integrin beta1 modulator Tirofiban prevents adipogenesis and obesity by the overexpression of integrin-linked kinase: a pre-clinical approach in vitro and in vivo

Author:

de Frutos S.ORCID,Griera M.,Hatem-Vaquero M.,Campillo S.,Gutiérrez-Calabres E.,García-Ayuso D.,Pardo M.,Calleros L.,Rodríguez-Puyol M.,Rodríguez-Puyol D.

Abstract

Abstract Background Obesity is caused by the enlargement of the white adipose tissue (WAT) depots, characterized by the hypertrophic enlargement of malfunctioning adipocytes within WAT which increases the storage of triglycerides (TG) in the lipid droplets (LD). Adipogenesis pathways as well as the expression and activity of some extracellular matrix receptors integrins are upregulated. Integrinβ1 (INTB1) is the main isoform involved in WAT remodeling during obesity and insulin resistance-related diseases. We recently described Integrin Linked Kinase (ILK), a scaffold protein recruited by INTB1, as an important mediator of WAT remodeling and insulin resistance. As the few approved drugs to fight obesity have brought long-term cardiovascular side effects and given that the consideration of INTB1 and/or ILK modulation as anti-obesogenic strategies remains unexplored, we aimed to evaluate the anti-obesogenic capacity of the clinically approved anticoagulant Tirofiban (TF), stated in preclinical studies as a cardiovascular protector. Methods Fully differentiated adipocytes originating from C3H10T1/2 were exposed to TF and were co-treated with specific INTB1 blockers or with siRNA-based knockdown ILK expression. Lipid-specific dyes were used to determine the TG content in LD. The genetic expression pattern of ILK, pro-inflammatory cytokines (MCP1, IL6), adipogenesis (PPARγ, Leptin), thermogenesis (UCP1), proliferation (PCNA), lipid metabolism (FASN, HSL, ATGL), and metabolite transporters (FABP4, FAT, AQP7) were detected using quantitative PCR. Cytoskeletal actin polymerization was detected by confocal microscopy. Immunoblotting was performed to detect INTB1 phosphorylation at Thr788/9 and ILK activity as phosphorylation levels of protein kinase B (AKT) in Ser473 and glycogen synthase kinase 3β (GSK3β) at Ser9. TF was intraperitoneally administered once per day to wildtype and ILK knockdown mice (cKDILK) challenged with a high-fat diet (HFD) or control diet (STD) for 2 weeks. Body and WAT weight gains were compared. The expression of ILK and other markers was determined in the visceral epididymal (epi) and inguinal subcutaneous (sc) WAT. Results TF reduced TG content and the expression of adipogenesis markers and transporters in adipocytes, while UCP-1 expression was increased and the expression of lipases, cytokines or PCNA was not affected. Mechanistically, TF rapidly increased and faded the intracellular phosphorylation of INTB1 but not AKT or GSK3β. F-actin levels were rapidly decreased, and INTB1 blockade avoided the TF effect. After 24 h, ILK expression and phosphorylation rates of AKT and GSK3β were upregulated, while ILK silencing increased TG content. INTB1 blockade and ILK silencing avoided TF effects on the TG content and the transcriptional expression of PPARγ and UCP1. In HFD-challenged mice, the systemic administration of TF for several days reduced the weight gain on WAT depots. TF reduced adipogenesis and pro-inflammatory biomarkers and increased lipolysis markers HSL and FAT in epiWAT from HFD, while increased UCP1 in scWAT. In both WATs, TF upregulated ILK expression and activity, while no changes were observed in other tissues. In HFD-fed cKDILK, the blunted ILK in epiWAT worsened weight gain and avoided the anti-obesogenic effect of in vivo TF administration. Conclusions ILK downregulation in WAT can be considered a biomarker of obesity establishment. Via an INTB1-ILK axis, TF restores malfunctioning hypertrophied WAT by changing the expression of adipocyte-related genes, increasing ILK expression and activity, and reducing TG storage. TF prevents obesity, a property to be added to its anticoagulant and cardiovascular protective advantages.

Funder

instituto de salud carlos iii

comunidad de madrid

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3