Reliable assessment of telomere maintenance mechanisms in neuroblastoma

Author:

Meeser Alina,Bartenhagen Christoph,Werr Lisa,Hellmann Anna-Maria,Kahlert Yvonne,Hemstedt Nadine,Nürnberg Peter,Altmüller Janine,Ackermann Sandra,Hero Barbara,Simon Thorsten,Peifer Martin,Fischer Matthias,Rosswog CarolinaORCID

Abstract

Abstract Background Telomere maintenance mechanisms (TMM) are a hallmark of high-risk neuroblastoma, and are conferred by activation of telomerase or alternative lengthening of telomeres (ALT). However, detection of TMM is not yet part of the clinical routine, and consensus on TMM detection, especially on ALT assessment, remains to be achieved. Methods Whole genome sequencing (WGS) data of 68 primary neuroblastoma samples were analyzed. Telomere length was calculated from WGS data or by telomere restriction fragment analysis (n = 39). ALT was assessed by C-circle assay (CCA, n = 67) and detection of ALT-associated PML nuclear bodies (APB) by combined fluorescence in situ hybridization and immunofluorescence staining (n = 68). RNA sequencing was performed (n = 64) to determine expression of TERT and telomeric long non-coding RNA (TERRA). Telomerase activity was examined by telomerase repeat amplification protocol (TRAP, n = 15). Results Tumors were considered as telomerase-positive if they harbored a TERT rearrangement, MYCN amplification or high TERT expression (45.6%, 31/68), and ALT-positive if they were positive for APB and CCA (19.1%, 13/68). If all these markers were absent, tumors were considered TMM-negative (25.0%, 17/68). According to these criteria, the majority of samples were classified unambiguously (89.7%, 61/68). Assessment of additional ALT-associated parameters clarified the TMM status of the remaining seven cases with high likelihood: ALT-positive tumors had higher TERRA expression, longer telomeres, more telomere insertions, a characteristic pattern of telomere variant repeats, and were associated with ATRX mutations. Conclusions We here propose a workflow to reliably detect TMM in neuroblastoma. We show that unambiguous classification is feasible following a stepwise approach that determines both, activation of telomerase and ALT. The workflow proposed in this study can be used in clinical routine and provides a framework to systematically and reliably determine telomere maintenance mechanisms for risk stratification and treatment allocation of neuroblastoma patients.

Funder

Deutsche Forschungsgemeinschaft

Else Kröner-Fresenius-Stiftung

Förderverein für krebskranke Kinder e.V. Köln

Fördergesellschaft Kinderkrebs-Neuroblastom-Forschung e.V.

Bundesministerium für Bildung und Forschung

Universität zu Köln

Universitätsklinikum Köln

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3