GNSS rapid precise point positioning enhanced by low Earth orbit satellites

Author:

Hong Ju,Tu Rui,Zhang Pengfei,Zhang Rui,Han Junqiang,Fan Lihong,Wang Siyao,Lu Xiaochun

Abstract

AbstractThe Low Earth Orbit (LEO) satellites can be used to effectively speed up Precise Point Positioning (PPP) convergence. In this study, 180 LEO satellites with a global distribution are simulated to evaluate their contribution to the PPP convergence. LEO satellites can give more redundant observations and improve satellite geometric distributions, particularly for a single Global Navigation Satellite System (GNSS). The convergence speed of the PPP float solution using the Global Positioning System (GPS, G) or BeiDou Navigation Satellite System (BDS, C) single system as well as the G/C/Galileo navigation satellite system (Galileo, E)/GLObal NAvigation Satellite System (GLONASS, R) combined system with LEO satellites added is improved by 90.0%, 91.0%, and 90.7%, respectively, with respect to the system without LEO satellites added. We introduced LEO observations to assist GNSS in PPP-AR (Ambiguity Resolution) and PPP-RTK (Real Time Kinematic). The success fix rate of a single system is significantly improved, and the Time-To-First-Fix (TTFF) of G and G/C/E is reduced by 86.4% and 82.8%, respectively, for the PPP-AR solution. We analyzed the positioning performance of LEO satellite assisted G/C/E PPP-RTK in the reference networks of different scales, namely different atmospheric delay interpolation accuracies. The success fix rate of the G/C/E combined system is improved from 86.8 to 94.9%, and the TTFF is reduced by 36.8%, with the addition of LEO satellites in the 57 km reference network. In the 110 km reference network, the success fix rate of the G/C/E combined system is improved from 64.0 to 88.6%, and the TTFF is reduced by 32.1%. GNSS PPP-RTK with adding the LEO satellites in the reference networks of different scales shows obvious improvement because the atmospheric correlation decreases with increasing distance from the reference networks.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3