Study of high-precision time transfer method enhanced by PPP-AR/PPP-RTK

Author:

Liu Mingyue,Tu RuiORCID,Chen Qiushi,Li Qi,Chen Junmei,Zhang PengfeiORCID,Lu Xiaochun

Abstract

Abstract With the ongoing advancements in the Global Navigation Satellite System (GNSS), the technology for high-precision time transfer facilitated by GNSS has also become increasingly refined. This paper aims to investigate the contribution of information-enhanced GNSS PPP to time transfer performance, with a focus on the comprehensive evaluation and analysis of the time transfer performance of PPP-AR and PPP-RTK. Using GPS as a case study, experimental results indicate that the average success fixing rate of PPP integer ambiguity resolution across five stations is 94%. Using the standard deviation for stability assessment, the analysis reveals that the stability of the station clock offset sequence of PPP-AR is superior to that of PPP floating solution. In comparison to the PPP floating solution, the average improvement of PPP-AR stability is 17%. Furthermore, using PPP-AR for time transfer improves the stability of the time transfer link clock offset sequence and also reduces its noise level. Moreover, different types of time transfer links exhibit varying degrees of improvement. The stability has been increased by 14% on average, and the noise level has been improved by 9% on average. Additionally,` the Allan deviation is employed to assess the frequency stability. The findings indicate that the frequency stability of the fixed solution is superior to that of the float solution. PPP-RTK also enhances the stability, noise level and frequency stability of time transfer even better than PPP-AR. Nevertheless, as the reference network scale increases, the accuracy of the interpolated atmospheric delay correction diminishes, impacting the performance of PPP-RTK.

Funder

Key R&D Program of China

Shandong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference32 articles.

1. Research on key technologies and methods of GNSS carrier phase time transfer;Zhang;J. Surv. Mapp.,2020

2. Satellite timing and time transfer technology progress;Yang;Navig. Pos. Timing,2021

3. Research on GPS PPP time transfer technology;Guang,2012

4. Research on precise point positioning time transfer based on receiver clock error constraint;Zhao;Glob. Posit. Syst.,2021

5. Time transfer accuracy analysis using GPS precise point positioning;Zhang;J. Wuhan Univ.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3