Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics

Author:

Caporaso J Gregory,Smit Sandra,Easton Brett C,Hunter Lawrence,Huttley Gavin A,Knight Rob

Abstract

Abstract Background Identifying coevolving positions in protein sequences has myriad applications, ranging from understanding and predicting the structure of single molecules to generating proteome-wide predictions of interactions. Algorithms for detecting coevolving positions can be classified into two categories: tree-aware, which incorporate knowledge of phylogeny, and tree-ignorant, which do not. Tree-ignorant methods are frequently orders of magnitude faster, but are widely held to be insufficiently accurate because of a confounding of shared ancestry with coevolution. We conjectured that by using a null distribution that appropriately controls for the shared-ancestry signal, tree-ignorant methods would exhibit equivalent statistical power to tree-aware methods. Using a novel t-test transformation of coevolution metrics, we systematically compared four tree-aware and five tree-ignorant coevolution algorithms, applying them to myoglobin and myosin. We further considered the influence of sequence recoding using reduced-state amino acid alphabets, a common tactic employed in coevolutionary analyses to improve both statistical and computational performance. Results Consistent with our conjecture, the transformed tree-ignorant metrics (particularly Mutual Information) often outperformed the tree-aware metrics. Our examination of the effect of recoding suggested that charge-based alphabets were generally superior for identifying the stabilizing interactions in alpha helices. Performance was not always improved by recoding however, indicating that the choice of alphabet is critical. Conclusion The results suggest that t-test transformation of tree-ignorant metrics can be sufficient to control for patterns arising from shared ancestry.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3