An evolutionary analysis of cAMP-specific Phosphodiesterase 4 alternative splicing

Author:

Johnson Keven R,Nicodemus-Johnson Jessie,Danziger Robert S

Abstract

Abstract Background Cyclic nucleotide phosphodiesterases (PDEs) hydrolyze the intracellular second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP). The cAMP-specific PDE family 4 (PDE4) is widely expressed in vertebrates. Each of the four PDE4 gene isoforms (PDE4 A-D) undergo extensive alternative splicing via alternative transcription initiation sites, producing unique amino termini and yielding multiple splice variant forms from each gene isoform termed long, short, super-short and truncated super-short. Many species across the vertebrate lineage contain multiple splice variants of each gene type, which are characterized by length and amino termini. Results A phylogenetic approach was used to visualize splice variant form genesis and identify conserved splice variants (genome conservation with EST support) across the vertebrate taxa. Bayesian and maximum likelihood phylogenetic inference indicated PDE4 gene duplication occurred at the base of the vertebrate lineage and reveals additional gene duplications specific to the teleost lineage. Phylogenetic inference and PDE4 splice variant presence, or absence as determined by EST screens, were further supported by the genomic analysis of select vertebrate taxa. Two conserved PDE4 long form splice variants were found in each of the PDE4A, PDE4B, and PDE4C genes, and eight conserved long forms from the PDE4 D gene. Conserved short and super-short splice variants were found from each of the PDE4A, PDE4B, and PDE4 D genes, while truncated super-short variants were found from the PDE4C and PDE4 D genes. PDE4 long form splice variants were found in all taxa sampled (invertebrate through mammals); short, super-short, and truncated super-short are detected primarily in tetrapods and mammals, indicating an increasing complexity in both alternative splicing and cAMP metabolism through vertebrate evolution. Conclusions There was a progressive independent incorporation of multiple PDE4 splice variant forms and amino termini, increasing PDE4 proteome complexity from primitive vertebrates to humans. While PDE4 gene isoform duplicates with limited alternative splicing were found in teleosts, an expansion of both PDE4 splice variant forms, and alternatively spliced amino termini predominantly occurs in mammals. Since amino termini have been linked to intracellular targeting of the PDE4 enzymes, the conservation of amino termini in PDE4 splice variants in evolution highlights the importance of compartmentalization of PDE4-mediated cAMP hydrolysis.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3