Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway

Author:

Wang WeiBing1ORCID,Zhou Hui1,Sun LaiBao2,Li MeiNa2,Gao FengJiao2,Sun AiJiao3,Zou XueNong4

Affiliation:

1. Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China

2. Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China

3. Department of Cardiovascularology, The Affiliated AnQing Municipal Hospital of Anhui Medical University, AnQing, China

4. Department of Orthopedics, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China

Abstract

Background Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The aim of this present study is to explore the precise molecular mechanism of osthole-mediated inhibition of neurotoxicity induced by ropivacaine. Methods: SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated. Results The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. Conclusions This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.

Funder

Nature Fund of Anqing science and Technology Bureau

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3