Probabilistic models for CRISPR spacer content evolution

Author:

Kupczok Anne,Bollback Jonathan P

Abstract

Abstract Background The CRISPR/Cas system is known to act as an adaptive and heritable immune system in Eubacteria and Archaea. Immunity is encoded in an array of spacer sequences. Each spacer can provide specific immunity to invasive elements that carry the same or a similar sequence. Even in closely related strains, spacer content is very dynamic and evolves quickly. Standard models of nucleotide evolution cannot be applied to quantify its rate of change since processes other than single nucleotide changes determine its evolution. Methods We present probabilistic models that are specific for spacer content evolution. They account for the different processes of insertion and deletion. Insertions can be constrained to occur on one end only or are allowed to occur throughout the array. One deletion event can affect one spacer or a whole fragment of adjacent spacers. Parameters of the underlying models are estimated for a pair of arrays by maximum likelihood using explicit ancestor enumeration. Results Simulations show that parameters are well estimated on average under the models presented here. There is a bias in the rate estimation when including fragment deletions. The models also estimate times between pairs of strains. But with increasing time, spacer overlap goes to zero, and thus there is an upper bound on the distance that can be estimated. Spacer content similarities are displayed in a distance based phylogeny using the estimated times. We use the presented models to analyze different Yersinia pestis data sets and find that the results among them are largely congruent. The models also capture the variation in diversity of spacers among the data sets. A comparison of spacer-based phylogenies and Cas gene phylogenies shows that they resolve very different time scales for this data set. Conclusions The simulations and data analyses show that the presented models are useful for quantifying spacer content evolution and for displaying spacer content similarities of closely related strains in a phylogeny. This allows for comparisons of different CRISPR arrays or for comparisons between CRISPR arrays and nucleotide substitution rates.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3