Evolution of transcriptional regulation in closely related bacteria

Author:

Tsoy Olga V,Pyatnitskiy Mikhail A,Kazanov Marat D,Gelfand Mikhail S

Abstract

Abstract Background The exponential growth of the number of fully sequenced genomes at varying taxonomic closeness allows one to characterize transcriptional regulation using comparative-genomics analysis instead of time-consuming experimental methods. A transcriptional regulatory unit consists of a transcription factor, its binding site and a regulated gene. These units constitute a graph which contains so-called “network motifs”, subgraphs of a given structure. Here we consider genomes of closely related Enterobacteriales and estimate the fraction of conserved network motifs and sites as well as positions under selection in various types of non-coding regions. Results Using a newly developed technique, we found that the highest fraction of positions under selection, approximately 50%, was observed in synvergon spacers (between consecutive genes from the same strand), followed by ~45% in divergon spacers (common 5’-regions), and ~10% in convergon spacers (common 3’-regions). The fraction of selected positions in functional regions was higher, 60% in transcription factor-binding sites and ~45% in terminators and promoters. Small, but significant differences were observed between Escherichia coli and Salmonella enterica. This fraction is similar to the one observed in eukaryotes. The conservation of binding sites demonstrated some differences between types of regulatory units. In E. coli, strains the interactions of the type “local transcriptional factor ➝ gene” turned out to be more conserved in feed-forward loops (FFLs) compared to non-motif interactions. The coherent FFLs tend to be less conserved than the incoherent FFLs. A natural explanation is that the former imply functional redundancy. Conclusions A naïve hypothesis that FFL would be highly conserved turned out to be not entirely true: its conservation depends on its status in the transcriptional network and also from its usage. The fraction of positions under selection in intergenic regions of bacterial genomes is roughly similar to that of eukaryotes. Known regulatory sites explain 20±5% of selected positions.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3