Validation of obesity based on self-reported data in Spanish women participants in breast cancer screening programmes

Author:

Isidoro Beatriz,Lope Virginia,Pedraz-Pingarrón Carmen,Collado-García Francisca,Santamariña Carmen,Moreo Pilar,Vidal Carmen,Laso María Soledad,García-Lopez Milagros,Pollán Marina

Abstract

AbstractBackgroundMeasurement of obesity using self-reported anthropometric data usually involves underestimation of weight and/or overestimation of height. The dual aim of this study was, first, to ascertain and assess the validity of new cut-off points, for both overweight and obesity, using self-reported Body Mass Index furnished by women participants in breast cancer screening programmes, and second, to estimate and validate a predictive model that allows recalculate individual BMI based on self-reported data.MethodsThe study covered 2927 women enrolled at 7 breast cancer screening centres. At each centre, women were randomly selected in 2 samples, in a ratio of 2:1. The larger sample (n = 1951) was used to compare the values of measured and self-reported weight and height, to ascertain new overweight and obesity cut-off points with self-reported data, using ROC curves, and to estimate a predictive model of real BMI using a regression model. The second sample (n = 976) was used to validate the proposed cut-off points and the predictive model.ResultsWhereas reported prevalence of obesity was 19.8%, measured prevalence was 28.2%. The sensitivity and specificity of this classification would be maximised if the new cut-off points were 24.30 kg/m2 for overweight and 28.39 kg/m2 for obesity. The probability of classifying women correctly in their real weight categories on the basis of these points was 82.5% in the validation sample. Sensitivity and specificity for determining obesity using the new cut-off point in the validation sample were 90.0% and 92.3% respectively. The predictive model for real BMI included the self-reported BMI, age and educational level (university studies vs lower levels of education). This model succeeded in correctly classifying 90.5% of women according to BMI categories, but its performance was similar to that obtained with the new cut-off points.ConclusionsQuantification of self-reported obesity entails a considerable underestimation of this problem, thereby questioning its validity. The new cut-off points established in this study and the predictive equation both allow for more accurate estimation of these prevalences.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference29 articles.

1. WHO/FAO: Joint Who/Fao Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases, Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint Who/Fao Expert Consultation. 2003, Geneva: WHO

2. Bender R, Trautner C, Spraul M, Berger M: Assessment of excess mortality in obesity. Am J Epidemiol. 1998, 147: 42-48.

3. Flegal KM, Graubard BI, Williamson DF, Gail MH: Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005, 293: 1861-1867. 10.1001/jama.293.15.1861.

4. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al: Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009, 373: 1083-1096. 10.1016/S0140-6736(09)60318-4.

5. Ministerio de Sanidady Política Social: Encuesta Europea de Salud 2009 Madrid. 2009, [http://www.msps.es/gl/estadEstudios/estadisticas/EncuestaEuropea/]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3