Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms

Author:

Sajadi Payam,Sang Yan-FangORCID,Gholamnia Mehdi,Bonafoni Stefania,Mukherjee Saumitra

Abstract

AbstractLandslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage $${(\mathrm{Ds}}_{\mathrm{d}})$$ ( Ds d ) , distance to faults $${(\mathrm{Ds}}_{\mathrm{f}})$$ ( Ds f ) , drainage density ($${D}_{d})$$ D d ) , elevation (Elev), fault density $$({F}_{d})$$ ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature $${(\mathrm{Pl}}_{\mathrm{c}})$$ ( Pl c ) , profile curvature $${(\mathrm{Pr}}_{\mathrm{c}})$$ ( Pr c ) , slope $${(S}^{^\circ })$$ ( S ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

CAS Interdisciplinary Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3