A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru

Author:

Badillo-Rivera Edwin12ORCID,Olcese Manuel3,Santiago Ramiro3,Poma Teófilo3ORCID,Muñoz Neftalí3,Rojas-León Carlos3,Chávez Teodosio3ORCID,Eyzaguirre Luz4,Rodríguez César5ORCID,Oyanguren Fernando5

Affiliation:

1. Centre for Climate Change and Disaster Risk Research, Universidad Nacional del Callao, Callao 07011, Peru

2. Faculty of Environmental Engineering and Natural Resources, Universidad Nacional del Callao, Callao 07011, Peru

3. Faculty of Geological, Mining and Metallurgical Engineering, Universidad Nacional de Ingeniería, Lima 15333, Peru

4. Faculty of Petroleum, Natural Gas and Petrochemical Engineering, Universidad Nacional de Ingeniería, Lima 15333, Peru

5. Faculty of Electrical and Electronic Engineering, Universidad Nacional del Callao, Callao 07011, Peru

Abstract

This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multicollinearity among some of them, which led to dimensionality reduction through a principal component analysis (PCA). Six susceptibility models were generated using weights of evidence, logistic regression, multilayer perceptron, support vector machine, random forest, and naive Bayes methods to produce quantitative susceptibility maps and assess the hazard associated with two scenarios: the first being El Niño phenomenon and the second being an earthquake exceeding 8.8 Mw. The main findings indicate that machine learning models exhibit excellent predictive performance for the presence and absence of mass movement events, as all models surpassed an AUC value of >0.9, with the random forest model standing out. In terms of hazard levels, in the event of an El Niño phenomenon or an earthquake exceeding 8.8 Mw, approximately 40% and 35% respectively, of the NLC area would be exposed to the highest hazard levels. The importance of integrating methodologies in mass movement susceptibility models is also emphasized; these methodologies include the correlation analysis, multicollinearity assessment, dimensionality reduction of variables, and coupling statistical models with machine learning models to improve the predictive accuracy of machine learning models. The findings of this research are expected to serve as a supportive tool for land managers in formulating effective disaster prevention and risk reduction strategies.

Publisher

MDPI AG

Reference81 articles.

1. El Comercio (2024, March 27). Vivir en Las Alturas. Available online: https://elcomercio.pe/eldominical/actualidad/vivir-alturas-392960-noticia/.

2. Tavera, H. (2024, June 09). Escenario de Sismo y Tsunami en el Borde Occidental de la Región Central del Perú. Available online: https://repositorio.igp.gob.pe/handle/20.500.12816/779.

3. INDECI (2024, June 09). Escenario Sísmico para Lima Metropolitana y Callao: Sismo 8.8Mw. Available online: https://portal.indeci.gob.pe/wp-content/uploads/2019/01/201711231521471-1.pdf.

4. INDECI (2024, June 09). Compendio Estadístico del INDECI 2017. Available online: https://www.indeci.gob.pe/wp-content/uploads/2019/01/201802271714541.pdf.

5. INDECI (2022, January 30). Dashboard de Control—Reporte de Emergencias. Available online: https://app.powerbi.com/view?r=eyJrIjoiNTFkOWRhYWQtYmMwMS00OWNmLTg4ZTctNjZjYTc1OTIyN2M0IiwidCI6IjNlZWNkMjZlLTlhNTUtNDg4MC04ODEyLWEzMGZjZGU3OGEyZCJ9&pageName=ReportSectioncd99edcca07a5ff10551.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3