Abstract
AbstractThe 28 September 2018 magnitude Mw7.8 Palu, Indonesia earthquake (0.178° S, 119.840° E, depth 13 km) occurred at 10:02 UTC. The major earthquake triggered catastrophic liquefaction, landslides, and a near-field tsunami. The ionospheric total electron content (TEC) derived from records of 5 ground-based global navigation satellite system (GNSS) receivers is employed to detect tsunami traveling ionospheric disturbances (TTIDs). In total, 15 TTIDs have been detected. The ray-tracing and beamforming techniques are then used to find the TTID source location. The bootstrap method is applied in order to further explore the possible location of the tsunami source based on results of the two techniques, which show the beamforming technique has a slightly better performance on finding possible locations of the tsunami source. Meanwhile, the circle method is employed to examine tsunami signatures of the sea-surface height and video records, and find possible tsunami origin locations. The coincidence of the TTID source location and the tsunami location shows that the ionospheric TEC recorded by local ground-based GNSS receivers can be used to confirm the tsunami occurrence, find the tsunami location, and support the tsunami early warning.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference33 articles.
1. Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Sausalito
2. Artru J, Ducic V, Kanamori H, Lognonne P, Murakami M (2005) Ionospheric detection of gravity waves induced by tsunamis. Geophy J Int 160:840–848. https://doi.org/10.1111/j.1365-246X.2005.02552.x
3. Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London, p 580
4. Dean RG, Dalrymple RA (1984) Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs
5. NATO security through science series;F Dias,2007
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献