Effects of topography and sea surface temperature anomalies on heavy rainfall induced by Typhoon Chaba in 2016

Author:

Cho Woojin,Park Jinyoung,Moon Jihong,Cha Dong-HyunORCID,Moon Yu-min,Kim Hyeon-Sung,Noh Kyoung-jo,Park Sang-Hwan

Abstract

AbstractTyphoon Chaba made landfall on the Korean Peninsula in the fall of 2016, resulting in record-breaking rainfall in southeastern Korea. In particular, the Ulsan metropolitan region experienced the most severe floods due to heavy rainfall of 319 mm for just 3 h. The heavy rainfall was possibly associated with the mountainous southeastern Korea topography and the warm sea surface temperature (SST) anomaly in the East China Sea. In this study, the Weather Research and Forecasting (WRF) model was used to investigate the effects of topography and SST anomalies through high-resolution numerical experiments. Simulation using original topography showed more rainfall on the windward and less on the leeward slope compared to the experiment with reduced topography around Ulsan. The moist flow in the typhoon was raised by orographic uplift, enhancing precipitation on the windward side and summits of the mountains. The orographically induced updraft extended to the mid-troposphere and contributed to the upward vertical moisture flux associated with rainfall. Therefore, the mountainous topography around Ulsan affected the local change in rainfall induced by the simulated typhoon. In addition, SST on the track of the typhoon controlled storm intensity and caused extreme precipitation changes. The experiment using the original SST in the East China Sea simulated less decayed typhoons and produced more precipitation compared to the experiment wherein the positive SST anomaly in the East China Sea was removed. The warm SST anomaly hindered the weakening of the typhoon moving northward to the mid-latitudes. At landfall, the stronger typhoon contained more water vapor, transported more moisture inland, and generated increased precipitation.

Funder

Republic of Korea Airforce

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3