Convection-permitting simulations reveal expanded rainfall extremes of tropical cyclones affecting South Korea due to anthropogenic warming

Author:

Lee MinkyuORCID,Min Seung-KiORCID,Cha Dong-HyunORCID

Abstract

AbstractUnderstanding how global warming affects tropical cyclone (TC) intensity and precipitation for target regions is essential to preparing for associated damages but detailed processes remain uncertain. This study provides the first quantification of anthropogenic influences on TC characteristics affecting South Korea using convection-permitting model (CPM) simulations (3 km resolution). For the observed four recent TCs that strongly affected South Korea, CPM simulations were performed under current (ALL) and counterfactual conditions without human influences (NAT). The observed sea surface temperature and lateral boundary conditions were used for ALL while changes attributable to human influences (estimated using CMIP6 multimodel simulations) were removed from observed boundary conditions for NAT runs. ALL experiments captured the observed TC intensity and precipitation reasonably. After removing human influences, TC intensity and precipitation were reduced in NAT experiments. Importantly, areas with extreme precipitation (i.e., having precipitation larger than 150 mm) were found to expand by 16–37% in ALL compared to NAT, which was induced by an enhanced upward motion near the TC core and an increase of background water vapor in line with warming. Further, the role of increased moisture was found to become important as TC moves to mid-latitudes. This study provides valuable insights into how greenhouse warming can intensify TC-induced extreme precipitation over East Asia.

Funder

National Research Foundation of Korea

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3