The Impact of Best Track Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS

Author:

Schreck Carl J.1,Knapp Kenneth R.2,Kossin James P.2

Affiliation:

1. Cooperative Institute for Climate and Satellites–North Carolina, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina

2. NOAA/National Climatic Data Center, Asheville, North Carolina

Abstract

Abstract Using the International Best Track Archive for Climate Stewardship (IBTrACS), the climatology of tropical cyclones is compared between two global best track datasets: 1) the World Meteorological Organization (WMO) subset of IBTrACS (IBTrACS-WMO) and 2) a combination of data from the National Hurricane Center and the Joint Typhoon Warning Center (NHC+JTWC). Comparing the climatologies between IBTrACS-WMO and NHC+JTWC highlights some of the heterogeneities inherent in these datasets for the period of global satellite coverage 1981–2010. The results demonstrate the sensitivity of these climatologies to the choice of best track dataset. Previous studies have examined best track heterogeneities in individual regions, usually the North Atlantic and west Pacific. This study puts those regional issues into their global context. The differences between NHC+JTWC and IBTrACS-WMO are greatest in the west Pacific, where the strongest storms are substantially weaker in IBTrACS-WMO. These disparities strongly affect the global measures of tropical cyclone activity because 30% of the world’s tropical cyclones form in the west Pacific. Because JTWC employs similar procedures throughout most of the globe, the comparisons in this study highlight differences between WMO agencies. For example, NHC+JTWC has more 96-kt (~49 m s−1) storms than IBTrACS-WMO in the west Pacific but fewer in the Australian region. This discrepancy probably points to differing operational procedures between the WMO agencies in the two regions. Without better documentation of historical analysis procedures, the only way to remedy these heterogeneities will be through systematic reanalysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3