Changes in nutrient stoichiometry in responding to diatom growth in cyclonic eddies

Author:

Zhou Kuanbo,Xu Yanping,Kao Shuh-Ji,Xiu Peng,Wan Xianhui,Huang Bangqin,Liu Xin,Du Chuanjun,Sun Jun,Sun Zhenyu,Dai MinhanORCID

Abstract

AbstractNutrient stoichiometry (e.g., nitrate + nitrite to soluble reactive phosphorus, refer to N + N/SRP, N/P hereafter) governs growth, competition and niche partitioning of phytoplankton in the illuminated oceans. The N/P, however, varies widely across the ocean and the underlying mechanisms remain unclear. Here, we report direct observations of significant variations in N/P in response to different life stages of two cyclonic eddies observed in the western South China Sea. High N/P (19.1 ± 6.9) values were observed around the nitracline in a mature-stage eddy, whereas a decay-stage eddy was characterized with low N/P (14.4 ± 4.1). The elevated N/P ratios accompanied by enriched fucoxanthin (pigment for diatom) and biogenic silica around the nitracline suggest that eddy pumping enhanced the growth of diatom which preferentially uptakes P relative to N in the mature stage of the eddy. Such high N/P ratios in the upper ocean could be reproduced if diatom uptake ratio was set between 10 and 16 in a data constrained numerical model. The preferential P uptake by enhanced diatom growth might reduce the P supply to the surface ocean, which is critical for N2-fixers. The transient changes in nutrient stoichiometry associated within the life cycle of cyclonic eddies also challenges the parameterization of physical–biogeochemical models with fixed phytoplankton uptake stoichiometry ratios, which could lead to bias of the model output for phytoplankton dynamics in oligotrophic ocean, where eddies frequently occur.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3