Cross-contamination by disinfectant towelettes varies by product chemistry and strain
-
Published:2020-08-24
Issue:1
Volume:9
Page:
-
ISSN:2047-2994
-
Container-title:Antimicrobial Resistance & Infection Control
-
language:en
-
Short-container-title:Antimicrob Resist Infect Control
Author:
Voorn Maxwell G., Goss Summer E., Nkemngong Carine A., Li Xiaobao, Teska Peter J., Oliver Haley F.ORCID
Abstract
Abstract
Background
Disinfectant products are used frequently on environmental surfaces (e.g. medical equipment, countertops, patient beds) and patient care equipment within healthcare facilities. The purpose of this study was to assess the risk of cross-contamination of Staphylococcus aureus and Pseudomonas aeruginosa during and after disinfection of predetermined surface areas with ready-to-use (RTU) pre-wetted disinfectant towelettes.
Methods
This study tested six disinfectant towelette products against S. aureus ATCC CRM-6538 and P. aeruginosa strain ATCC-15442 on Formica surfaces. Each disinfectant was evaluated on a hard nonporous surface and efficacy was measured every 0.5 m2 using a modified version of EPA MLB SOP-MB-33 to study the risk of cross-contamination.
Results
We found that all of the wipes used in this study transferred S. aureus and P. aeruginosa from an inoculated surface to previously uncontaminated surfaces. Disinfectant towelettes with certain chemistries also retained a high level of viable bacteria after disinfection of the surface area. The cross-contamination risk also varied by product chemistry and bacterial strain.
Conclusion
Disinfectant wipes can cross-contaminate hard nonporous surfaces and retain viable bacterial cells post-disinfection, especially over larger surface areas. This highlights a need to further investigate the risk disinfectant wipes pose during and post-disinfection and guidance on maximum surface areas treated with a single towelette.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference38 articles.
1. Office of Disease Prevention and Health Promotion. Healthcare-associated infections. Healthy People. ODPHP. 2020. https://www.healthypeople.gov/2020/topics-objectives/topic/healthcare-associated-infections. Accessed 4 Feb 2020. 2. Center for Disease Control. National and state healthcare-associated infections progress report, vol. 2017: CDC; 2017. https://www.cdc.gov/hai/data/archive/2017-HAI-progress-report.html. Accessed 28 Oct 2019. 3. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldavs Z, Gross C, Bamberg W, Sievers M, Concannon C, Buhr N, Warnke L, Maloney M, Ocampo C, Brooks J, Oyewumi T, Sharmin S, Richards K, Rainbow J, Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR. Changes in prevalence of health-care associated infection in U.S. hospitals. N Engl J Med. 2018;379:1732–44. 4. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32. 5. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|