A Unitary Association-based conodont biozonation of the Smithian–Spathian boundary (Early Triassic) and associated biotic crisis from South China

Author:

Leu MarcORCID,Bucher Hugo,Vennemann Torsten,Bagherpour Borhan,Ji Cheng,Brosse Morgane,Goudemand Nicolas

Abstract

AbstractThe Smithian–Spathian boundary (SSB) crisis played a prominent role in resetting the evolution and diversity of the nekton (ammonoids and conodonts) during the Early Triassic recovery. The late Smithian nektonic crisis culminated at the SSB, ca. 2.7 Myr after the Permian–Triassic boundary mass extinction. An accurate and high-resolution biochronological frame is needed for establishing patterns of extinction and re-diversification of this crisis. Here, we propose a new biochronological frame for conodonts that is based on the Unitary Associations Method (UAM). In this new time frame, the SSB can thus be placed between the climax of the extinction and the onset of the re-diversification. Based on the study of new and rich conodont collections obtained from five sections (of which four are newly described here) in the Nanpanjiang Basin, South China, we have performed a thorough taxonomical revision and described one new genus and 21 new species. Additionally, we have critically reassessed the published conodont data from 16 other sections from South China, and we have used this new, standardized dataset to construct the most accurate, highly resolved, and laterally reproducible biozonation of the Smithian to early Spathian interval for South China. The resulting 11 Unitary Association Zones (UAZ) are intercalibrated with lithological and chemostratigraphical (δ13Ccarb) markers, as well as with ammonoid zones, thus providing a firm basis for an evolutionary meaningful and laterally consistent definition of the SSB. Our UAZ8,which is characterized by the occurrence ofIcriospathodusex gr.crassatus,Triassospathodus symmetricusandNovispathodus brevissimus, is marked by a new evolutionary radiation of both conodonts and ammonoids and is within a positive peak in the carbon isotope record. Consequently, we propose to place the SSB within the separation interval intercalated between UAZ7and UAZ8thus leaving some flexibility for future refinement and updating.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Paleontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3