Are Late Permian carbon isotope excursions of local or of global significance?

Author:

Bagherpour Borhan1,Bucher Hugo2,Vennemann Torsten3,Schneebeli-Hermann Elke2,Yuan Dong-xun4,Leu Marc2,Zhang Chao4,Shen Shu-Zhong5

Affiliation:

1. Department of Earth Sciences, Faculty of Sciences, Shiraz University, Shiraz, Iran and Paleontological Institute, University of Zurich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland

2. Paleontological Institute, University of Zurich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland

3. Institute of Earth Surface Dynamics, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland

4. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

5. School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China

Abstract

Abstract We present a new, biostratigraphically calibrated organic and inorganic C-isotope record spanning the basal Late Permian to earliest Triassic from southern Guizhou (Nanpanjiang basin, South China). After fluctuations of a likely diagenetic overprint are removed, three negative carbon isotope excursions (CIEs) persist. These include a short-lived CIE during the early Wuchiapingian, a protracted CIE ending shortly after the Wuchiapingian–Changhsingian Boundary, and a third CIE straddling the Permian–Triassic boundary. Comparison of our new C-isotope record with others from the same basin suggests that influences of local bathymetry and of the amount of buried terrestrial organic matter are of importance. Comparison with other coeval time series outside of South China also highlights that only the negative CIE at the Permian–Triassic boundary is a global signal. These differences can be explained by the different volumes of erupted basalts between the Late Permian Emeishan and the younger Siberian large igneous provinces and their distinct eruptive modalities. Emeishan volcanism was largely submarine, implying that sea water was an efficient buffer against atmospheric propagation of volatiles. The equatorial position of Emeishan was also an additional obstacle for volatiles to reach the stratosphere and benefit from an efficient global distribution. Consequently, the local significance of these CIEs calls into question global correlations based on C-isotope chemostratigraphy during the Late Permian. The timing of the Late Permian Chinese CIEs is also not reflected in changes in species diversity or ecology, unlike the sudden and global Permian–Triassic boundary crisis and subsequent Early Triassic upheavals.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3