The Middle Triassic palaeontomofauna of Monte San Giorgio with the description of Merithone laetitiae (†Permithonidae) gen. et sp. nov.

Author:

Montagna MatteoORCID,Magoga GiuliaORCID,Magnani Fabio

Abstract

AbstractThe Triassic is considered a crucial period for the establishment of the modern insect fauna and fossil records from this period are fundamental for understanding the real impact that the end Permian Mass Extinction events had on these animals. Here, we review the insect fossils from one of the main deposits of this period in the world, Monte San Giorgio, which is considered one of the nine main insect Fossillagerstätten. In this Lagerstätte, located on the border between Switzerland and Italy, a total of 273 fossil insects have been collected in five localities. The fossils found in Val Mara site D, one of the two richest insect fossils sites of Monte San Giorgio, present peculiar features, such as extraordinary sizes and phosphatisation of internal tissues revealing fine internal details. In contrast, the Val Mara site VM 12 fossil record (248 specimens) is dominated by small to medium size insects, usually almost intact, preserving details such as setae on wings and compound eyes. Besides these exceptional features, these fossil insects are of extreme evolutionary importance, since they represent the first or the last occurrence for their lineage. In this regard, their use to calibrate nodes in a phylogenomic dating analysis led to backdating the origin of many insect lineages, including Diptera and Heteroptera. Up to now, a total of five species from Monte San Giorgio have been formally described, belonging to the orders Archaeognatha (†Monura and Machilidae), Ephemeroptera, Hemiptera (Tingidae) and Coleoptera (Adephaga). A further species, Merithone laetitiae (†Permithonidae) gen. et sp. nov., whose fossil is included among the recent findings in Val Mara site VM 12, is described in the present work.

Funder

Dipartimento del territorio del Cantone Ticino and the Swiss Federal Office for the Environment

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Bashkuev, A., Jürgen, S., Aristov, D., Ponomarenko, A., Sinitshenkova, N., & Mahler, H. (2012). Insects from the Buntsandstein of Lower Franconia and Thuringia. Paläontologische Zeitschrift, 86(2), 175–185.

2. Bechly, G., & Stockar, R. (2011). The first Mesozoic record of the extinct apterygote insect genus Dasyleptus (Insecta: Archaeognatha: Monura: Dasyleptidae) from the Triassic of Monte San Giorgio (Switzerland). Palaeodiversity, 4, 23–37.

3. Benton, M. J. (2016). The Triassic. Current Biology, 26(23), R1214–R1218.

4. Bernasconi, S. M. (1994). Geochemical and microbial controls on dolomite formation in anoxic environments: A case study from the Middle Triassic (Ticino, Switzerland). Contributions to Sedimentology, 19, 1–109.

5. Briggs, D. E. G., & Kear, A. J. (1993). Fossilisation of soft-tissue in the laboratory. Science, 259, 1439–1442.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3