Evolving perspectives in Hymenoptera systematics: Bridging fossils and genomes across time

Author:

Zhang Y. Miles12ORCID,Bossert Silas32ORCID,Spasojevic Tamara452ORCID

Affiliation:

1. Institute of Ecology and Evolution University of Edinburgh Edinburgh UK

2. Department of Entomology, National Museum of Natural History Smithsonian Institution Washington DC USA

3. Department of Entomology Washington State University Pullman Washington USA

4. 2nd Zoological Department Natural History Museum Vienna Vienna Austria

5. Life Sciences Natural History Museum Basel Basel Switzerland

Abstract

AbstractThe recent advances in sequencing technologies, phylogenomics and divergence dating methods call for an integrative review of the current state of Hymenoptera systematics. We here explore the impact of these latest developments on the Hymenoptera phylogeny and our understanding of the timing of Hymenoptera evolution, while identifying the current methodological constraints and persistent knowledge gaps that warrant further investigation. Our review highlights the lack of consensus among the backbone phylogeny of Hymenoptera between key phylogenomic studies, as the higher level phylogeny remains unresolved in key nodes such as the relationships among Eusymphyta, the relationships within the Infraorder Proctotrupomorpha and the placements of the superfamilies Ichneumonoidea, Ceraphronoidea and Vespoidea. Furthermore, we underline the huge variation in divergence age estimates for Hymenoptera and detect several major gaps and/or disagreements between the fossil record and available age estimates, either due to the poorly studied fossil record or problematic age estimates, or both. To better understand the timing of Hymenoptera evolution and the role of key diversification factors, we will need continuous efforts to (i) reconcile conflicts among morphological and molecular phylogenies, by improving taxon sampling of underrepresented lineages, applying novel techniques to study morphology, making use of genome‐scale data and critically assessing incongruences in genetic markers; (ii) improve the Hymenoptera fossil record, by exercising integrative taxonomy and bringing together paleontologists and neontologists; and (iii) reconcile age estimates, by relying on tip dating approaches to bridge fossils, morphology and genomes across time.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3