Author:
Guo Peng,Huang Ziqi,Zhao Wei,Lin Nan,Wang Yihan,Shang Fude
Abstract
Abstract
Background
Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of ‘Ziyan Gongzhu’ through physiological, transcriptome and metabolome levels.
Results
Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3’H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of ‘Ziyan Gongzhu’ was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of ‘Ziyan Gongzhu’ by affecting pigment synthesis.
Conclusion
Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in ‘Ziyan Gongzhu’ and identify possible genes for application regarding molecular colored-leaf cultivar breeding.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Shang F, Yin Y, Xiang Q. The culture of sweet osmanthus in China. J Henan Univ Nat Sci. 2003;43:136–9.
2. Xiang Q, Liu Y. An illustrated monograph of the sweet osmanthus variety in China. Hangzhou: Zhejiang Science & Technology Press; 2008.
3. Li C-F, Xu Y-X, Ma J-Q, Jin J-Q, Huang D-J, Yao M-Z, et al. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha’ (Camellia sinensis). BMC Plant Biol. 2016;16:195.
4. Anderson R, Ryser P. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content. Plants. 2015;4:505–22.
5. Kerio LC, Wachira FN, Wanyoko JK, Rotich MK. Characterization of anthocyanins in Kenyan teas: Extraction and identification. Food Chem. 2012;131:31–8.