Role of gamma-irradiated sodium alginate on growth, physiological and active components of iceberg lettuce (Lactuca sativa) plant

Author:

Aly Amina A.ORCID,Eliwa Noha E.,Safwat Gehan

Abstract

Abstract Background One of the most widely recognized biostimulators of plant development; is oligoalginate, which regulates the biological processes of plants and was used in horticultural fields as a plant growth regulator. The plan of the current research was to study, however, the foliar application of un-irradiated and irradiated Na-alginate (UISA and ISA) to improve the growth, physiological activity, and other active components of the Egyptian iceberg lettuce plant. Degraded Na-alginate is equipped with exposure of sodium alginate in its solid state to gamma-rays at different dose levels (0.0, 25, 50, 75, and 100 kGy). The characterization of the oligo-alginates achieved by γ-radiation deprivation at different dose levels was performed by FTIR, XRD, TGA, SEM, and TEM. Different concentrations of irradiated sodium alginate at dose levels of 100 kGy (200, 400, 600, and 800 ppm, as well as deionized water used as a control) were sprayed with a hand sprayer every week after transplanting the iceberg lettuce seedlings in the field until the harvest stage. Morphological traits were evaluated, as well as pigments, ascorbic acid, phenols, flavonoids, soluble proteins, and antioxidant activity. Results Irradiated Na-alginate resulted in the depolymerization of Na-alginate into small molecular-weight oligosaccharides, and the best dose to use was 100 kGy. Certain chemical modifications in the general structure were observed by FTIR analysis. Two absorbed bands at 3329 cm−1 and 1599 cm−1, were recognized that are assigned to O–H and C-O stretching, respectively, and peaks achieved at 1411 cm−1 represent the COO-stretching group connected to the sodium ion. The peak obtained at 1028 cm−1 was owing to the stretching vibration of C-O. The results of TGA provided that the minimum weight reminder was in the ISA at 100 kGy (28.12%) compared to the UISA (43.39%). The images of TEM pointed out that the Na-alginate was globular in shape, with the particle distribution between 12.8 and 21.7 nm in ISA at 100 kGy. Irradiated sodium alginate caused a noteworthy enhancement in the vegetative growth traits (leaf area, stem length, head weight, and leaf number). By spraying 400 ppm, ISA showed a maximum increase in total pigments (2.209 mg/g FW), ascorbic acid (3.13 mg/g fresh weight), phenols (1.399 mg/g FW), flavonoids (0.775 mg/g FW), and antioxidant activities (82.14. %). Also, there were correlation coefficients (R values) between leaf area, stem length, head weight, and leaf number values with total pigment content, antioxidant activity, total soluble proteins, and ascorbic acid. Conclusions The outcomes of the recent investigation demonstrated that the application of spraying irradiated Na-alginate (100 kGy) resulted in an improvement of the considered characters.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3